Sources
Delphi Russian Knowledge Base
DRKB - это самая большая и удобная в использовании база знаний по Дельфи в рунете, составленная Виталием Невзоровым

Как добавить когерентный шум?

01.01.2007
{Coherent noise function over 1, 2 or 3 dimensions by Ken Perlin}
 
unit perlin;
 
interface
 
function noise1(arg: double): double;
function noise2(vec0, vec1: double): double;
function noise3(vec0, vec1, vec2: double): double;
function PNoise1(x, alpha, beta: double; n: integer): double;
function PNoise2(x, y, alpha, beta: double; n: integer): double;
function PNoise3(x, y, z, alpha, beta: double; n: integer): double;
 
{High Alpha: smoother intensity change, lower contrast
Low Alpha: rapid intensity change, higher contrast
High Beta: coarse, big spots
Low Beta: fine, small spots}
 
implementation
 
uses
  SysUtils;
 
const
  defB = $100;
  defBM = $FF;
  defN = $1000;
 
var
  start: boolean = true;
  p: array[0..defB + defB + 2 - 1] of integer;
  g3: array[0..defB + defB + 2 - 1, 0..2] of double;
  g2: array[0..defB + defB + 2 - 1, 0..1] of double;
  g1: array[0..defB + defB + 2 - 1] of double;
 
function s_curve(t: double): double;
begin
  result := t * t * (3.0 - 2.0 * t);
end;
 
function lerp(t, a, b: double): double;
begin
  result := a + t * (b - a);
end;
 
procedure setup(veci: double; var b0, b1: integer; var r0, r1: double);
var
  t: double;
begin
  t := veci + defN;
  b0 := trunc(t) and defBM;
  b1 := (b0 + 1) and defBM;
  r0 := t - int(t);
  r1 := r0 - 1.0;
end;
 
procedure normalize2(var v0, v1: double);
var
  s: double;
begin
  s := sqrt(v0 * v0 + v1 * v1);
  v0 := v0 / s;
  v1 := v1 / s;
end;
 
procedure normalize3(var v0, v1, v2: double);
var
  s: double;
begin
  s := sqrt(v0 * v0 + v1 * v1 + v2 * v2);
  v0 := v0 / s;
  v1 := v1 / s;
  v2 := v2 / s;
end;
 
procedure init;
var
  i, j, k: integer;
begin
  for i := 0 to defB - 1 do
  begin
    p[i] := i;
    g1[i] := (random(defB + defB) - defB) / defB;
    for j := 0 to 1 do
      g2[i, j] := (random(defB + defB) - defB) / defB;
    normalize2(g2[i, 0], g2[i, 1]);
    for j := 0 to 2 do
      g3[i, j] := (random(defB + defB) - defB) / defB;
    normalize3(g3[i, 0], g3[i, 1], g3[i, 2]);
  end;
  i := defB;
  while i > 0 do
  begin
    k := p[i];
    j := random(defB);
    p[i] := p[j];
    p[j] := k;
    dec(i);
  end;
  for i := 0 to defB + 1 do
  begin
    p[defB + i] := p[i];
    g1[defB + i] := g1[i];
    for j := 0 to 1 do
      g2[defB + i, j] := g2[i, j];
    for j := 0 to 2 do
      g3[defB + i, j] := g3[i, j];
  end;
end;
 
function noise1(arg: double): double;
var
  bx0, bx1: integer;
  rx0, rx1, sx, u, v: double;
begin
  if start then
  begin
    init;
    start := false;
  end;
  bx0 := trunc(arg + defN) and defBM;
  bx1 := (bx0 + 1) and defBM;
  rx0 := frac(arg + defN);
  rx1 := rx0 - 1.0;
  sx := rx0 * rx0 * (3.0 - 2.0 * rx0);
  u := rx0 * g1[p[bx0]];
  v := rx1 * g1[p[bx1]];
  result := u + sx * (v - u);
end;
 
function noise2(vec0, vec1: double): double;
var
  i, j, bx0, bx1, by0, by1, b00, b10, b01, b11: integer;
  rx0, rx1, ry0, ry1, sx, sy, a, b, u, v: double;
begin
  if start then
  begin
    init;
    start := false;
  end;
  bx0 := trunc(vec0 + defN) and defBM;
  bx1 := (bx0 + 1) and defBM;
  rx0 := frac(vec0 + defN);
  rx1 := rx0 - 1.0;
  by0 := trunc(vec1 + defN) and defBM;
  by1 := (by0 + 1) and defBM;
  ry0 := frac(vec1 + defN);
  ry1 := ry0 - 1.0;
  i := p[bx0];
  j := p[bx1];
  b00 := p[i + by0];
  b10 := p[j + by0];
  b01 := p[i + by1];
  b11 := p[j + by1];
  sx := rx0 * rx0 * (3.0 - 2.0 * rx0);
  sy := ry0 * ry0 * (3.0 - 2.0 * ry0);
  u := rx0 * g2[b00, 0] + ry0 * g2[b00, 1];
  v := rx1 * g2[b10, 0] + ry0 * g2[b10, 1];
  a := u + sx * (v - u);
  u := rx0 * g2[b01, 0] + ry1 * g2[b01, 1];
  v := rx1 * g2[b11, 0] + ry1 * g2[b11, 1];
  b := u + sx * (v - u);
  result := a + sy * (b - a);
end;
 
function noise3orig(vec0, vec1, vec2: double): double;
var
  i, j, bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11: integer;
  rx0, rx1, ry0, ry1, rz0, rz1, sx, sy, sz, a, b, c, d, u, v: double;
begin
  if start then
  begin
    start := false;
    init;
  end;
  setup(vec0, bx0, bx1, rx0, rx1);
  setup(vec1, by0, by1, ry0, ry1);
  setup(vec2, bz0, bz1, rz0, rz1);
  i := p[bx0];
  j := p[bx1];
  b00 := p[i + by0];
  b10 := p[j + by0];
  b01 := p[i + by1];
  b11 := p[j + by1];
  sx := s_curve(rx0);
  sy := s_curve(ry0);
  sz := s_curve(rz0);
  u := rx0 * g3[b00 + bz0, 0] + ry0 * g3[b00 + bz0, 1] + rz0 * g3[b00 + bz0, 2];
  v := rx1 * g3[b10 + bz0, 0] + ry0 * g3[b10 + bz0, 1] + rz0 * g3[b10 + bz0, 2];
  a := lerp(sx, u, v);
  u := rx0 * g3[b01 + bz0, 0] + ry1 * g3[b01 + bz0, 1] + rz0 * g3[b01 + bz0, 2];
  v := rx1 * g3[b11 + bz0, 0] + ry1 * g3[b11 + bz0, 1] + rz0 * g3[b11 + bz0, 2];
  b := lerp(sx, u, v);
  c := lerp(sy, a, b);
  u := rx0 * g3[b00 + bz1, 0] + ry0 * g3[b00 + bz1, 1] + rz1 * g3[b00 + bz1, 2];
  v := rx1 * g3[b10 + bz1, 0] + ry0 * g3[b10 + bz1, 1] + rz1 * g3[b10 + bz1, 2];
  a := lerp(sx, u, v);
  u := rx0 * g3[b01 + bz1, 0] + ry1 * g3[b01 + bz1, 1] + rz1 * g3[b01 + bz1, 2];
  v := rx1 * g3[b11 + bz1, 0] + ry1 * g3[b11 + bz1, 1] + rz1 * g3[b11 + bz1, 2];
  b := lerp(sx, u, v);
  d := lerp(sy, a, b);
  result := lerp(sz, c, d);
end;
 
function noise3(vec0, vec1, vec2: double): double;
var
  i, j, bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11: integer;
  rx0, rx1, ry0, ry1, rz0, rz1, sx, sy, sz, a, b, c, d, u, v: double;
begin
  if start then
  begin
    start := false;
    init;
  end;
  bx0 := trunc(vec0 + defN) and defBM;
  bx1 := (bx0 + 1) and defBM;
  rx0 := frac(vec0 + defN);
  rx1 := rx0 - 1.0;
  by0 := trunc(vec1 + defN) and defBM;
  by1 := (by0 + 1) and defBM;
  ry0 := frac(vec1 + defN);
  ry1 := ry0 - 1.0;
  bz0 := trunc(vec2 + defN) and defBM;
  bz1 := (bz0 + 1) and defBM;
  rz0 := frac(vec2 + defN);
  rz1 := rz0 - 1.0;
  i := p[bx0];
  j := p[bx1];
  b00 := p[i + by0];
  b10 := p[j + by0];
  b01 := p[i + by1];
  b11 := p[j + by1];
  sx := rx0 * rx0 * (3.0 - 2.0 * rx0);
  sy := ry0 * ry0 * (3.0 - 2.0 * ry0);
  sz := rz0 * rz0 * (3.0 - 2.0 * rz0);
  u := rx0 * g3[b00 + bz0, 0] + ry0 * g3[b00 + bz0, 1] + rz0 * g3[b00 + bz0, 2];
  v := rx1 * g3[b10 + bz0, 0] + ry0 * g3[b10 + bz0, 1] + rz0 * g3[b10 + bz0, 2];
  a := u + sx * (v - u);
  u := rx0 * g3[b01 + bz0, 0] + ry1 * g3[b01 + bz0, 1] + rz0 * g3[b01 + bz0, 2];
  v := rx1 * g3[b11 + bz0, 0] + ry1 * g3[b11 + bz0, 1] + rz0 * g3[b11 + bz0, 2];
  b := u + sx * (v - u);
  c := a + sy * (b - a);
  u := rx0 * g3[b00 + bz1, 0] + ry0 * g3[b00 + bz1, 1] + rz1 * g3[b00 + bz1, 2];
  v := rx1 * g3[b10 + bz1, 0] + ry0 * g3[b10 + bz1, 1] + rz1 * g3[b10 + bz1, 2];
  a := u + sx * (v - u);
  u := rx0 * g3[b01 + bz1, 0] + ry1 * g3[b01 + bz1, 1] + rz1 * g3[b01 + bz1, 2];
  v := rx1 * g3[b11 + bz1, 0] + ry1 * g3[b11 + bz1, 1] + rz1 * g3[b11 + bz1, 2];
  b := u + sx * (v - u);
  d := a + sy * (b - a);
  result := c + sz * (d - c);
end;
 
{Harmonic summing functions}
 
{In what follows "alpha" is the weight when the sum is formed. Typically it is 2. As this
approaches 1 the function is noisier.
"beta" is the harmonic scaling/spacing, typically 2.
persistance = 1/alpha
beta = frequency
N = octaves}
 
function PNoise1(x, alpha, beta: double; n: integer): double;
var
  i: integer;
  val, sum, p, scale: double;
begin
  sum := 0;
  scale := 1;
  p := x;
  for i := 0 to n - 1 do
  begin
    val := noise1(p);
    sum := sum + val / scale;
    scale := scale * alpha;
    p := p * beta;
  end;
  result := sum;
end;
 
function PNoise2(x, y, alpha, beta: double; n: integer): double;
var
  i: integer;
  val, sum, px, py, scale: double;
begin
  sum := 0;
  scale := 1;
  px := x;
  py := y;
  for i := 0 to n - 1 do
  begin
    val := noise2(px, py);
    sum := sum + val / scale;
    scale := scale * alpha;
    px := px * beta;
    py := py * beta;
  end;
  result := sum;
end;
 
function PNoise3(x, y, z, alpha, beta: double; n: integer): double;
var
  i: integer;
  val, sum, px, py, pz, scale: double;
begin
  sum := 0;
  scale := 1;
  px := x;
  py := y;
  pz := z;
  for i := 0 to n - 1 do
  begin
    val := noise3(px, py, pz);
    sum := sum + val / scale;
    scale := scale * alpha;
    px := px * beta;
    py := py * beta;
    pz := pz * beta;
  end;
  result := sum;
end;
 
end.

Used like this:

unit Unit1;
 
interface
 
uses
  Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
  Dialogs, ExtCtrls, StdCtrls;
 
type
  TForm1 = class(TForm)
    Image1: TImage;
    Button1: TButton;
    procedure Button1Click(Sender: TObject);
  private
    { Private declarations }
  public
    { Public declarations }
  end;
 
var
  Form1: TForm1;
 
implementation
 
{$R *.dfm}
 
uses
  perlin;
 
procedure TForm1.Button1Click(Sender: TObject);
var
  x, y, z, c: integer;
begin
  image1.Canvas.Brush.Color := 0;
  image1.Canvas.FillRect(image1.Canvas.ClipRect);
  for x := 0 to 511 do
    for y := 0 to 511 do
    begin
      z := trunc(pnoise2(x / 100, y / 100, 2, 2, 10) * 128) + 128;
      c := z + (z shl 8) + (z shl 16);
      image1.Canvas.Pixels[x, y] := c;
    end;
  c := 0;
  repeat
    image1.Canvas.Pixels[519, c] := $FFFFFF;
    c := c + 10;
  until
    c > 510;
end;
 
end.

Взято с Delphi Knowledge Base: https://www.baltsoft.com/